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Abstract. The shrinkage via the vacancy mechanism of a mono–atomic nanotube is described. 
Using Gibbs–Thomson boundary conditions an exact solution is obtained of the kinetic equation in 
quasi steady–state at the linear approximation. A collapse time as a function of the size of a 
nanotube is determined. Kinetic Monte Carlo simulation is used to test the analytical analysis. 

Introduction 

Recently Sun et al. [1] have developed a simple and generic approach to the large–scale 
synthesis of hollow nanostructures made of Au, Pt and Pd. The key step of this process is the redox 
reaction between a Ag template and the solution of the appropriate salt precursor. This approach has 
been successfully applied to prepare hollow nanostructures of noble metals with a range of different 
morphologies such as spheres, tubes, triangular rings, prisms and cubes. A quite different method 
for synthesizing hollow (binary) nanostructures that makes use of the Kirkendall effect has been 
demonstrated by Yin et al. [2]. It was shown that due to the larger diffusion rate of cobalt, the 
reaction of cobalt nanocrystals with oxygen, sulfur and selenium leads to the formation of hollow 
nanospheres of cobalt oxide, sulphide and selenide, respectively. An interdiffusion theory that 
describes the diffusion formation of hollow nanospheres as resulting from the precipitation of 
supersaturated vacancies has been sketched [3]. Such hollow nanostructures have considerable 
promise in a wide range of technological applications such as catalysis without competing side 
reactions, vehicles for drug delivery, containment of environmentally sensitive species and many 
others [1,2,4]. 
However, it has been noted [5,6] that hollow nanospheres should in fact be unstable in principle 

and, with time, they will tend to shrink into a solid nanosphere. This is because the resulting 
reduction in surface area should be energetically more advantageous. According to [5,6] the 
mechanism of shrinking can be considered as resulting from the vacancy flux from the inner surface 
to the external surface. The driving force for this flux is the difference between the vacancy 
concentrations Vc  on the inner and external surfaces. In [7] using Gibbs-Thomson boundary 

conditions an exact solution was obtained of the kinetic equation of shrinking via the vacancy 
mechanism of a hollow mono–atomic nanosphere in quasi steady-state at the linear approximation. 
The collapse time as a function of the geometrical sizes of hollow nanospheres was determined. In 
this paper, we report on the first study of the shrinking kinetics by vacancy diffusion of a pure 
element nanotube. 
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Theory 

For a nanotube with internal radius ir  and external radius er , the variation of vacancy 

composition near the surfaces with the number of vacancies in the void void
VN  is simply given by the 

Gibbs-Thomson equation: 
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where 0
Vc  is the equilibrium vacancy concentration near a planar surface, γπrHG 2S =∆  is the free 

energy of the cylindrical surface with a principal radius of curvature r  ( irr =  or err = ) and length 

H and γ is the surface energy per unit area. In the above formula, the curvature is taken as positive 
for the inner surface and negative for the external surface. Since for a cylindrical geometry we have 
that: 
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Eq. 1 reduces to: 
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where kTΩ= γβ and Ω  is the atomic volume. In the following, we will assume that the 

equilibrium vacancy concentration eq
Vc  in the volume of the system does not strongly differ from the 

equilibrium vacancy concentration near a planar surface ( 0
Vc ≈ eq

Vc ) and, thereafter, we will use eq
Vc  

instead of 0
Vc . If the ratio 1<<rβ , then, for the vacancy concentrations at the inner and the 

external surfaces of a nanotube a linear approximation in a similar way to a hollow nanosphere [5-
7], can be used: 
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A linear approximation (Eq. 4) is satisfactory (with a maximum error of 5%) when β3i >r . 
The diffusion equation in cylindrical coordinates (considering the area far from the ends of the 

nanotube and therefore the assumption of cylindrical symmetry is valid) for the steady–state 
approximation of the vacancy concentration is [8]: 
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With the boundary conditions of Eq. 4 this has the following solution: 
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Then, according to Fick's first law, the vacancy flux JV from the void to the shell across the inner 
surface is simply given by: 
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where VD  is the diffusion coefficient of the vacancies. DV is related to the measurable tracer 

diffusion coefficient by 0V
eq
V

* fDcD =  where f0 is the geometric tracer correlation factor for the 

lattice. The radius ir  of the inner surface varies with time as: 
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The external radius of the nanotube er  changes can be found from the condition of conservation of 

matter: 
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In order to obtain the analytical (closed form) solution of Eqs. 8 and 9, we introduce new non-
dimensional variables and, making use of Eq. 9, we relate them to the old variables: 
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Then Eq. 8 can be rewritten as: 
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This equation can be readily solved analytically to give the solution (where we defined 0εεδ =  

and e0i00 rr=ε  is the ratio of the inner i0r  and the external e0r  radii of the nanotube at the initial 

time 0=t ): 
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Figure 1. Shrinking kinetics of a pure element nanotube having initial ratios of inner and external 
radii e0i00 rr=ε equal to 0.1, 0.5 and 0.9. The normalized size parameter and dimensionless time are 

0εεδ =  and 3
fV

eq
V6 rtDc βτ =  respectively. 
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Since the linear approximation of the Gibbs-Thomson boundary conditions (Eq. 4) is satisfactory 
only at the beginning from β3i >r  (as mentioned above), the lowest value of δ  given by Eq. 12 

cannot be equal to zero. It should obey the following condition: ( )[ ] 2
1

2
f

1
0 31

−− +> βεδ r . Therefore, it 

is reasonable to define a collapse time as the time during which the magnitude of δ  will decrease e  
times, namely: )( 1

с
−== eδττ . Hence, Eq. 12 can be applied to find the collapse time only for a 

nanotube with geometrical parameters obeying the following condition: ( )[ ] 2
1

2
f0 31

−
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should be noted that 2ε  is the ratio of the number of virtual lattice sites within the void to the total 
number of lattice sites inside the whole of the nanotube, i.e.: 
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Figure 2. The dimensionless collapse time )( 1

с
−= eττ  as a function of the dimensionless size 

parameter e0i00 rr=ε  of a nanotube at 0=t . The inset show the asymptotic approximation (dashed 

line) of the exact solution (solid line) Eq. 12 for the case 00 →ε  Eq. 16. 
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where N  is the numbers of atoms and shell
VN  is the numbers of vacancies within the shell of the 

nanotube respectively and void
VN  is the number of vacancies in the void of the nanotube. 

The course of the shrinking kinetics by vacancies of a pure element nanotube can be visualized 
with the aid of Fig. 1. This shows a plot of the normalized size parameter δ  (or 2δ ) versus the 
dimensionless time τ  for three initial ratios of inner and external radii 0ε , these being 0.1, 0.5 and 
0.9. It is evident that shrinking is delayed with an increase of 0ε  (with constant fr ). The dependence 

of the collapse time )( 1
с

−= eττ  on the initial ratio of the inner and external radii 0ε  is plotted in 
Fig. 2. 
Finally, let us consider the asymptotic behavior of the collapse time сτ  of the nanotube at 
00 →ε . We expand every function in Eq. 12 into a Taylor series. Thus we get relationship: 

( ) )(ln2 3
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which is satisfied over a rather wide range of 0ε  values (see Fig. 2, inset). 

Kinetic Monte Carlo simulations 

     Monte Carlo (MC) calculations were performed on a f.c.c. lattice 44a×44a×16a (a is the lattice 
parameter) with periodic boundary conditions. The initial nanotube with 5.00 =ε  consisted of 38 

656 atoms and had an inner radius ri0 = 8a, external radius re0 = 16a and a linear size H = 16a. The 
axis of the nanotube was oriented along the [001] direction (z–direction) and had Xaxis = Yaxis = 22a 
spacings. The rest of the sites on the lattice were vacant. Therefore, periodic boundary conditions 
only along the z–direction were imposed. No initial vacancies were introduced inside the shell itself 
of the nanotube. We consider nearest neighbor pair interactions. The reduced pair interaction energy 

2.1−=kTφ  was chosen using the expression [7]: 
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to provide on the one hand reasonable calculation speed and, on the other, an equilibrium vacancy 
concentration ≈eq

Vc 7.54×10-4 close to the vacancy concentration at the melting temperature mT . 

We chose the Metropolis MC algorithm for its transparency and to provide a clear relationship 
between MC steps per atom (MCSA) n and real time t. For this case, the relation evidently is 

0Γ= nt , where 00 12ν=Γ  and 0ν  is the effective attempt frequency. Then it  
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Figure 3. MC simulation of the shrinking kinetics of a pure element nanotube with 5.00 =ε  and 

2.1−=kTφ . The normalized size parameter is 0εεδ = . 

 
 
follows immediately that 122

V natD =  (for this model 0
2

V νaD = ). Thus, if Eq.12 is valid then 

using it for the τ calculation on the basis of measurements of shell
VN  and void

VN  during MC 

simulations and, next, determination of ε (or δ) with aid of Eq. 15, it follows from Eq. 10 that we 
should get a linear dependence of τ versus n. 
In Fig. 3, the changes of the normalized size parameter δ are shown during MC simulation of the 

shrinking kinetics of a f.c.c. nanotube. As can be seen from Fig. 4, τ calculated from this data 
according to Eq. 12 depends linearly from n. Thus the results of the analysis above of the shrinking 
kinetics of a nanotube are in complete accord with the kinetic MC simulation of this process. Linear 
fitting of the data (Fig. 4) allows the determination of the parameter β (see Eq. 10). Taking into 
account that for the nanotubes studied ar 38f = , we will have that β ≈ 1.296a using the linear 
fitting only for the points satisfying the condition β3i >r  (see Fig. 4). The parameter β directly 
relates to the surface energy per unit area γ. It should be noted for our purposes, since any nanotube 
has inner and external surfaces, and each of them has a set of different facets, γ is considered to be 
the mean of some effective surface energy per unit area averaged over all facets of both surfaces of 
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the nanotube (the influence of the external one will be stronger due to its larger area) during 
shrinkage. Therefore, knowing the parameter β allows the determination of the crystallographic 
surface with the surface energy per unit area equivalent or close to the averaged surface energy per 
unit area of internal and external surfaces of nanotube during the shrinkage. 
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Figure 4. Test of Eq. 12 on the basis of the results of MC simulation shrinking kinetics of a pure 
element nanotube with 5.00 =ε  and 2.1−=kTφ  (see Fig. 3). 

 
The simplicity of the model used in the MC simulation allows the writing of expressions for the 

surface energy per unit area sφγ 3−=  (s is the area per atom) considering that each surface atom 

has 6 bonds on average. Then, using the relation kTs βφΩ−= 3  we can calculate the area per atom 
and next, compare with the ones for crystallographic surfaces. Taking into account that for the f.c.c. 
lattice the volume per atom is 43a=Ω , we have that s ≈ 0.694a2. This value is close to 0.707a2 – 
the value of the area per atom for {110} crystallographic planes. Thus, the averaged surface energy 
per unit area of the external surface (its contribution in the averaging of γ is dominant) of such a 
nanotube during shrinking is close to γ of the {110} crystallographic surface. It is well known from 
both experimental data and molecular dynamics (MD) simulations using the embedded-atom 
method that the {110} surface inclines to the reconstructions with increasing atomic density (see, 
for example, [9-12] and references therein). Therefore, we can anticipate that the reconstruction 
processes will occur in areas of high energy facets on the external surface of such nanotubes both in 
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real experiments and in MD simulations by the embedded-atom method. Furthermore, we should 
note that the reconstruction of the external surface has already been observed during the MD 
simulation of hollow nanospheres with similar geometrical parameters [13]. In principle, such 
reconstruction can noticeably affect the kinetics of the shrinkage nanotube described above. 
Therefore, further progress in the investigations of the stability of nanotubes should probably be 
guided by the MD method. 

Summary 

The shrinkage via the vacancy mechanism of a pure element nanotube has been described. Using 
Gibbs-Thomson boundary conditions an exact solution has been obtained of the kinetic equation in 
quasi steady-state at the linear approximation. The collapse time as a function of the geometrical 
sizes of nanotubes has been determined. Kinetic MC simulation of the shrinkage of nanotube was 
performed: it completely confirmed the predictions of the analytical model. However, it has been 
shown on the basis of this simulation that under real conditions reconstruction of the external 
surface can occur. This reconstruction could not be taken into account either in the theoretical 
analysis or kinetic MC simulation. 
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